Mixed convection in a slender rectangular channel

Abstract

This paper describes the influence of through-flow on the mixed convection in a slender rectangular channel. In a rectangular enclosure, the convection structure most often observed is rolls with axes parallel to the smaller side of the rectangular enclosure. If a through-flow is imposed on such convection, the fluid flows keeping its structure in the region that Ra number is large and Re number is small. In such a mixed convection, the flow pattern plays an important role in the heat transfer process. In this study, the flow-visualization by thermo-sensitive liquid-crystal suspension method were conducted covering wide Ra and Re ranges. Consequently, the convection pattern was classified into three patterns by use of Ra and Re numbers.

1. 緒言

熱対流(自然対流)は強制流が印加された場合、あるいは強制的に流されている流体中に温度差が生じ、その流体中に密度差が発生した場合、それらは混合流れのため、相互に作用し、複雑な流れ場を形成する。このような混合流れは、大気中での丘陵地帯における風、陸地および海における微風、そして基礎流体力学や熱伝達の研究、また微小電子機器の冷却、小型熱交換器の熱伝達、化学蒸着（CVD）における単結晶膜の成長、太陽エネルギー收集器などの数多くの科学技術までを含む、地球物理学や工学技術などにおける現象において幅広い範囲で目立っており、その流れの構造に対する詳細な理解が必要となる。したがって、それらの伝熱流動特性を理解する上で、そのような共存対流現象の対流構造について、詳細な研究が求められている。

本研究では、上記に述べた共存対流現象の熱輸送現象解明の手始めとして、2次元領域場における共存対流現象の対流構造に着目した。上下伝熱面がそれぞれ一様に加熱、冷却された水平薄肉矩形流路モデルとして用い、その薄肉矩形流路内に強制対流効果として一定な方向流れを与えた対流場で起こる共存対流現象について適温度メルト法による流れの可視化を行うことで、対流現象を明らかにしようとした。以下にその結果について述べる。

2. 実験装置

Fig.1 Experimental setup

* 福島工業高等専門学校 機械工学科 （いわき市平上荒川字長尾 30）
作動流体は、ローラーポンプによりチューブ内を流れ、テストセクションの左側に設置された熱交換器で所定の温度となり、テストセクション左端に設けられた流路へ流れ込む。そして整流格子により流れが整えられた後、テストセクション内へと流れし、テストセクション右端に設けられた流路から流出する。流出した作動流体は、テストセクション右側に設置された熱交換器を通過した後、緩衝油槽に入り、再びローラーポンプによってテストセクションへ流れていく（Fig.1および4参照）。

テストセクション周辺は、アクリル板を数枚使用した多重構造になっているが、外部の熱混入の影響を避けることはどうして難しい。したがって、Fig.4に示すように装置周辺を発熱スチール製の断熱ボックスで覆い、その断熱ボックス内に熱交換器、およびファンを設置して、ボックス内の温度を一定に保つ。なお、ボックス内の温度は、上下伝熱面温度と下部伝熱面温度の中間温度に設定した。

実験に際しては、まず、テストセクション内に空気のボイドが入らないように注意して、作動流体であるシリコンオイルを入れる。シリコンオイルの物理性値はTable1に示す。シリコンオイル注入後、テストセクション上下伝熱面の温度差を観測することで熱伝導を試験し、しばしば示す。これは、シリコンオイルをテストセクションに対して観察させるためでもある（シリコンオイルを観察させないで液晶がテストセクションの前後壁に付着し、可視化が困難になる）。次いで、シリコンオイルに液晶を混合したもの（重量比0.1％）を、テストセクション両側の流路から注射器を用いて、テストセクション内に注入する。液晶注入後、対流が発達するまで再び放置する。これは液晶の沈殿を防ぎ、また液晶の攪拌を促すためである。液晶が十分に攪拌した後、対流を静止させるために、テストセクションの上下伝熱面の温度を等しくする。

完全に対流が静止し、熱平衡状態になったのを確認後、テストセクション上下伝熱面を上面冷却、下面加熱の状態で所定の温度差に設定する。設定温度差にし、対流が十分発達した後、テストセクション内の自然対流の発達を観察するため、ねじれたスクリューソケットを設け、スクリューソケットを所望の位置に固定し、スクリューソケットからの温度差を測定する。なお、スクリューソケットからの温度差は、テストセクションの上下伝熱面温度の差である。
流パターンの観察および写真撮影を行う。なお、テストセクション両側の熱交換器、および断熱ボックス内の温度は、テストセクション上下伝熱面温度の中間温度に設定した。

次いで、ローラーポンプの電圧を所定の電圧にし、テストセクション内の流体に一方向流を印加し、対流が十分発達したのを確認した後に、対流の遷移バターンの1周期に要する時間を測定する（ここでいう周期とは、ある対流パターンから、その対流パターンに戻るまでの時間のことである）1周期に要する時間を測定した後、1/8あるいは1/4周期毎に撮影を行う。

対流パターン撮影時には、テストセクション両側に設けたケシノンライトのスリット光をテストセクションの側面から照射し、約2[m]前方（スリット光の照射断面に対して垂直方向）から写真撮影を行った。

3. 無次元パラメータ

本研究においては、以下に示すような無次元数を用いた。自然対流の強度を示すレイリーノ数は1式(1)に示すようなヘレ−ショウ近似に基づくレイリーノ数を適用した。これは、前後壁の効果により流体が拘束され、流れが二次元になることを考慮したレイリーノ数であり、一般的な臨界レイリーノ数と近似した。レイリーノ数の臨界値は3式(3)に示すように一般的な定義を用いた。

\[Ra_{HS} = \frac{\Delta T D^3}{12 \nu} \]

\[Re = \frac{\mu_0 H}{\nu} \]

\[Gr = \frac{g \Delta T D^3}{\nu^2} \]

ここで、\(\beta \) は体細胞率、\(g \) は重力加速度、\(\Delta T \) は上下温度差、\(D H \) はそれぞれテストセクションの流路幅、流路高さ、\(\nu \) は熱拡散率、\(\nu \) は動粘度、\(\mu_0 \) は平均流れ速度を示している。ここで、1式(1)における3式(2)という項が前後壁の効果を考慮に入れた修正係数となっている。

4. 可視化実験結果

4.1 自然対流パターン

まずは、本実験装置において、強制流を印加しない自然対流状態の対流パターンをPhoto 1に示す。この実験は以下の共存対流のパターンと比較するために行ったものである。

まず、温度差が\(\Delta T = 1.0[K] \)の時にはテストセル両端でわずかな流動が見られるものの、テストセル全体を通じて対流は発生していない。熱輸送は熱伝導によって行われている。\(\Delta T = 1.5[K] \)の比較的温度差の低い場合でのバターンでは、テストセル全体に安定しているが50個のロールが形成される。ロールの流れ方向は、テストセル左側から順に左回り、右回りと交互になっている。温度差を上げていくと、\(\Delta T = 2.5[K] \)では安定した対流バターンとなり、テストセル全体をほぼ10等分にするようなロールが形成されるバターンを示した。本実験装置において、臨界レイリーノ数は既報において報告されているように\(Ra_{HS} = 170 \)付近

\[a) \Delta T = 1.0K(\text{Ra}_{HS} = 148) \]

\[b) \Delta T = 1.5K(\text{Ra}_{HS} = 223) \]

\[c) \Delta T = 2.5K(\text{Ra}_{HS} = 371) \]

Photo 1 Natural convection patterns

であることが確かめられた。

4.2 共存対流パターン

次に、本実験装置において、上記に述べた自然対流バターンに強制流を与えた場合の対流パターンを以下に示す。ここで示す実験結果は上下伝熱面温度差を\(\Delta T = 2.5[K] \)に固定し、強制流の強さを変化させて行った。また、これらの画像はスチールカメラを用い、適度なシャッタースピードで液体粒子の軌跡が写るように設定しているため、定性的であるが流れ場の様子が把握できる。

Photo 2 は、上下伝熱面温度25[deg,C]、下伝熱面温度25[deg,C]で、上下伝熱面温度差\(\Delta T = 2.5[K] \)(\text{Ra}_{HS} = 371)の自然対流状態に、テストセル左側から右側へ一方向流を与ええたときの対流パターンを示したものをである。

まず、Photo 1-cの自然対流場に\(\nu_0 = 1.2[mm/mm] \)（\(Re = 3.8 \times 10^2 \)）の一方向流を与えたときの対流パターンをPhoto 2-aに示す。このとき周期は138[sec]であり、Photo 2は1/8周期ごとの状態を示している。まず流路出口近傍、すなわちテストセル右端のロールは、一方流れにより押されテストセル内から消えてしまい、流路入口近傍、すなわちテストセル左端のロールは大きくなくなっている。\(\tau = 0 \)で10周期あった流れ（流れの流れ方向は左から順に右回り、左回りと交互になっている）は、\(\tau = 4 \)のときは9個になる。更に時間が経過すると、テストセル左端に新たなロールが形成されはじめ、\(\tau = 7/2 \)になると、再びロール
の数が10個になる。ロールの流れ方向は初期状態（t = 0）のときと逆になっている。そして、t = 3τ/4で再び9個となり（ロールの流れの方向はt = τ/4のときと逆）、t = 7τ/8では、テストセル左端に新たなロールが形成されはじめ、t = τで初期状態、すなわちt = 0の状態に戻る。この条件では、自然対流流れの構造が一方向流によってほとんど崩されなく、テストセル全体域の流れが自然対流のロール構造を維持したまま連続的に移動し、かつ周期的に決まった対流パターンを示した。

Photo 3 は、先程と同様に自然対流場に

\[u_0 = 4.9 \text{ mm/min} \] (Re = 1.6 \times 10^7) の一方向流を与えて、流れの遷移パターンがほぼ一定になってからの一連の写真である。このとき周期は208[s]であり、Photo 3は1/8周期ごとの状態を示している。この実験結果では、下流側においては流れが蛇行的となっているのがわかる。また、上流側では他方向流の影響で垂直方向の速度成分がほとんど存在せず、成層化した状態で流体が移動していく様子が観察された。

Photo 4は、自然対流場に

\[u_0 = 7.1 \text{ mm/min} \] (Re = 2.4 \times 10^7) の一方向流を与えたときの対流パターンを示したものである。このときの周期は112[s]であり、Photo 4は1/4周期ごとの状態を示している。この場合も、Photo 3の場合と同様、上流側においては、流体が成層化した状態で移動しており、下流側では、垂直方向の速度成分がPhoto 3の場合に比べて小さくなっているが、蛇行的流れとなっています。また流入流速が増加したことにより、Photo 3の場合に比べて上流側の成層化した領域が広がており、テストセル中央付近にまで及んでいる。

更に流速を上げ、

\[u_0 = 9.0 \text{ mm/min} \] (Re = 3.0 \times 10^7) の一方向流を自然対流場に与えたときの対流パターンをPhoto 5に示す。この条件では、テストセル全体を流体が成層化した状態で移動しており、テストセル内を温度境界
塩木：矩形容器内における共存対流の熱流動特性

層が発達しながら流れていく様子のみが観察された。

4.3 温度測定結果

Fig.5に示すのは上下伝熱面温度差が$\Delta T = 4.0\,[K]$の際の熱電対（各熱電対の位置はFig.3参照）の温度測定結果である。先程の可視化実験の際とレイリー数が異なるが、Fig.5-aがPhoto 20のように、テストセル全領域の流体が自然対流のロール構造を維持したまま連続的に移動していった場合の温度変動を示している。いずれの熱電対も周期的に温度変動を繰り返している様子がわかる。次に、Fig.5-bはPhoto 3のように上流側では一方向流の影響で成層状態に流れが移動し、下流側においては流れが蛇行的になっている間の温度変動を示している。上流側のT.C.1では温度変動の振幅が小さく、下流側のT.C.3では振幅が大きくなっていることがわかる。

Fig.5-cはPhoto 4のよう流れ状態の時に得られた温度変動パターンである。上流部での流れがほとんど成層状態であるため、T.C.1ではほとんど温度変動がなく、ほぼ一直線になっている。また、Fig.5-a～cの温度測定結果において、T.C.3の温度変動の振幅に着目すると、ほとんど違いがないことがわかる。これらは、強制流が印可されることにより、温度変動の周期が変わるものの、振幅は強制流の影響をあまり受けず、上下伝熱面温度差に大きく影響を受けるからであると推測される。

4.4 フローパターンマップ

これまでの実験結果より、定性的ではあるが流れの構造を以下の3パターンに分類した。

Pattern (i)

流路出口からロールが消えていく同時に、流路入口近傍に新たなロールが形成されるようなテストセル全体の流体が自然対流構造を維持した状態で連続的に移動するパターン

→慣性効果に比べ、浮力効果が十分強いようなパターン
Pattern (ii)
上昇および下降しているトレーサが右側のロールへ流れ込み、テストセル全体の流れが蛇行型になるパターン→慣性効果がかなり強く、浮力効果によって導かれる垂直方向の速度成分がテストセル全体に残っているようなパターン。

Pattern (iii)
下流側では、流れが蛇行型になるが、上流側では不規則な状態で流れが移動するパターン、もしくはテストセル全体を流体が横断した状態で移動し、テストセル内を温度境界層が発達しながら流れていくパターン→下流側では慣性効果に比べて浮力効果がやや強いが、上流側では慣性効果が十分に強くないパターン、もしくはテストセル全体を通して慣性効果が十分に強いようなパターン。

Fig.6に上記のパターンによって区別したフローパターンマップを示す。このフローパターンマップは、Hele-Shaw近似に基づくレイリー数Ra_{Cl}とレイノルズ数Reの関数として、実験で得られた上記の各対流パターンをプロットしたものである。またマップ中の各実線は、実験結果を基にした$Gr/Re=constant$の曲線である。このマップから、Gr/Reの値によってフローパターンをある程度、整理することができた。次に、Fig.7はレイノルズ数Reと流れの周期T_1、流体が波長分の距離を移動するのに要する時間T_2、およびHele-Shaw近似に基づくレイリー数Ra_{Cl}の関係を示したものである。Fig.7からは、レイノルズ数が大きくなる、すなわち流体粘性が大きくなる、流れの周期、ならびに流体が波長分の距離を移動するのに要する時間は減少していき、各プロットがほぼ一つの曲線上に来ることがわかる。このことから、自然対流場において方向流を印加したことによって導かれる流れの周期はRa_{Cl}にはほとんど依存せず、Reに大きく依存すると考えられる。

5. 結言
感熱遮蔽式による可視化実験により、下面加熱・上面冷却の薄層水の矩形流路内に強制対流状態をして、一定な方向流を与えたことによって導かれる対流の遷移パターンについて検討を行った結果、各対流パターンにおける以下の3つのフローパターンに分けられることが、これらのフローパターンをHele-Shaw近似に基づくレイリー数Ra_{Cl}とレイノルズ数Reの関数としてプロットし、フローパターンマップを作成することができた。

また自然対流場において方向流を印加したことによって導かれる流れの周期を計測した結果、Hele-Shaw近似に基づくレイリー数Ra_{Cl}レイノルズ数Re、および流れの周期の関係から、自然対流場において方向流を印加したことによって導かれる流れの周期は、Ra_{Cl}にはほとんど依存せず、Reに大きく依存することがわかった。

References