特異積分方程式を利用した円形境界からなる
応力集中問題の数値解析法（2）

Numerical Solution of Stress Concentration Problems Consist of Elliptical Boundary Using Singular Integral Equation (2)

（平成14年9月受理）

松尾忠利*（MATSUO Tadatoshi）

Abstract

This paper deals with numerical solutions of singular integral equations in interaction problems of elliptical holes under general loading. The problems are formulated as a system of singular integral equations with Cauchy-type singularities, where the densities of body forces distributed in the x- and y-directions are to be unknown functions. In order to satisfy the boundary conditions along the notches, several types of fundamental density functions are proposed; then, the body densities are approximated by a linear combination of the fundamental density functions and polynomials. The accuracy of the present analysis is verified by comparing with the results obtained by the previous method. The present method is found to give rapidly converging numerical results for stress distribution along the hole boundaries.

1. 緒 言

前報において体積力法の特異積分方程式を用いた外側切欠き問題の高精度解析法を考察した。その結果、未知関数である体積力密度を基本密度関数と多項式の積で近似する数値解析法の有効性が確認された。そこで本報では応力集中の干涉問題の最も基本的な問題である、無限板中の2だ円孔の干涉問題の高精度解析法を考察する。しかし、この問題は、前報の外側切欠きの問題と異なり個々のだ円孔では、x軸について対称であるが、y軸については対称ではない（i=1, 2）。したがって、前報の解析法とは異なる手法を取り入れる必要があると考えられる。この点を、図1の半無限板の斜め線引き裂の問題例にとって説明する。この問題は混合モード問題であるので、き裂となるべき境界面上には、モードI型とモードII型の集団力を分布させる必要がある。同様にして、図2の2だ円孔の干涉問題においても境界条件を満足させるためには、き裂問題と同じ表現を用いるとすれば、点A, BではモードI型のみ、点CではモードI, II型の集中力を分布させることが必要であると考えられる。

上述の点を確かめるために、まず図2の問題を従来の体積力法で用いられている基本密度関数【無限板中の1だ円孔を厳密に表現する体積力密度（モードI型）】と多項式の積で近似する方法で解析する。本解析法では境界上の応力が容易に求められることから、境界上の応力分布を求め境界条件の満足度を確認する。その結果、モードI型のみの基本密度関数を用いる方法では、境界条件を完全には満足させることができない場合があることを示す。

その解決策として、境界条件を完全に満足させるために、新しい基本密度関数（モードII型）を定義する。この基本密度関数を用いて同じ問題を解析し、従来の体積力法では完全には満足させることができなかった境界条件を、この解析方法では完全に満足させることができることを示す。
2. 従来の基本密度関数のみを用いる場合の解析法

本解析方法を図2に示すような遠方に一致したx方向の引張応力σでおよびy方向の引張応力σを受ける無限板中の2点円孔の干渉問題を例にとって説明する。この問題は、重ね合わせの原理に基づく体積力の考え方により、無限板中のx軸について定義される2点円孔をx, y方向の集中力が働くときの任意の点（x=d+a cos θ, y=b sin θ）の応力場の解を得てゆくことができる。このとき問題は、2点円孔となる仮想境界上に分布させたx, y方向の体積力密度ρ, ρおよび未知関数と特異積分方程式(1)を表わされる。

\[
\frac{d}{ds} \rho_x(\theta) \cos \theta + \rho_y(\theta) \sin \theta \theta = \mathcal{C} \cos \theta \theta + \mathcal{D} \sin \theta \theta
\]

(1.a)

\[
\frac{d}{ds} \rho_x(\theta) \cos \theta + \rho_y(\theta) \sin \theta \theta = \mathcal{C} \cos \theta \theta + \mathcal{D} \sin \theta \theta
\]

(1.b)

式(1)の第二項および第三項は、1/(θ−φ)/2の特異性を有する項を含んでいる。そのためθ=φの場合にはCauchyの主価をとることとする。

特異積分方程式(1)の未知関数であるρ, ρは2点円孔となる仮想境界の微小要素ds=√dr+dtを用い、x, y方向の成分をそれぞれdFx, dFyとするとき次の式で定義される。

\[
\rho_x(\phi) = \frac{dF_x}{ds}, \quad \rho_y(\phi) = \frac{dF_y}{ds}
\]

(2)

もし体積力の密度として通常の密度の定義に用いられるように、境界に沿った長さ当たりの定義 \[\rho \phi(\phi, \rho \phi(\phi))\] を用いるものとすれば特異積分方程式(1)の解法が、未知関数ρ, ρを重み関数ρ, ρと基本密度関数の積で近似して解くことに相当する。

\[
\rho_x(\phi) = \frac{dF_x}{ds} = \frac{dF_x}{ds} = \rho_x(\phi) \int_0^1 dF_x
\]

\[
\rho_y(\phi) = \frac{dF_y}{ds} = \frac{dF_y}{ds} = \rho_y(\phi) \int_0^1 dF_y
\]

(3)

ここで、\(n(\phi), n(\phi)\) が仮想境界上の点 (x, y) における単位外向き法線ベクトルの座標成分である。式(3)中の \(\rho(\phi), \rho(\phi)\) が重み関数であり、\(n(\phi), n(\phi)\) が基本密度関数である。

前報と同様に、未知関数を連続関数として近似するために、\(\rho(\phi), \rho(\phi)\) を次式で表す。

\[
\rho_x(\phi) = \sum_{n=1}^{M1} \alpha_n \phi(\phi)
\]

\[
\rho_y(\phi) = \sum_{n=1}^{M2} \alpha_n \phi(\phi)
\]

(4)

ここでM1, M2は、それぞれ0 ≤ θ ≤ π/2, π/2 ≤ θ ≤ πの選定数であり、総選定数はM=M1+M2である。したがって、式(4)は、\(\rho(\phi)\) を0 ≤ θ ≤ π/2でM1次、π/2 ≤ θ ≤ 3π/2でM2次関数で近似して、\(\rho(\phi)\)を0 ≤ θ ≤ πでM=M1+M2次の多項式で近似することを意味している。ここで、\(\rho(\phi)\) を\(\phi(\phi)\)および\(s(\phi)\)の2つの多項式で近似する理由は、\(\phi = π/2\)において\(n(\phi) = 0\)であるので\(\rho(\phi)\)が\(\phi = π/2\)で連続で\(\rho(\phi)\)が\(\phi = π/2\)で不連続となるためである（つまり、2点円孔の干渉によって、\(\rho(\phi)\)が0とはならないが、\(n(\phi) = 0\)であるために、\(\phi = π/2\)は指摘する）。

以上の離散化の方法により、式(1)の特異積分方程式は、係数\(a_n, b_n\)についての2M元の連立方程式に還元される。

\[
\sum_{n=1}^{M1} (a_n A_n + b_n B_n) = (\sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta)\]

\[
\sum_{n=1}^{M2} (a_n C_n + b_n D_n) = (\sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta)\]

(5)
任意の点の応力は係数 a_n, b_n と A_n に相当する影響係数のの一つ結合で表される。以上の解析の方法により、無限板中の等大列円孔の応力分布ならびに最大応力を求める。

3. 従来の基本密度関数のみを用いた場合の解析結果

図2の無限板中の2列円孔の問題において、形状比が、$a/b=1$, $d/a=3$, $\sigma_0=0$, $\sigma_1=1$ の場合の点 A ($\theta=0$') および点 B ($\theta=180$') における応力集中係数の値の変化を順次地関数を用いた体積力法の解析結果とともに表1示す。表中で同値である体積力法の応力集中係数の外挿値 ($M=\infty$) は、分割数 $M=48$, 32 における解析結果から求めたもものである。本解析による応力集中係数は、$M=8$ 程度で K_{1e}, K_{2e} ともに Ling の解析結果と有効数字4桁まで一致している。これは抗力を必要とする従来の体積力法の解析結果よりも良好な収束性を示している。

境界条件 ($\sigma_0=0$, $\tau_0=0$') の満足度を確認するために、円孔周縁に沿った応力 σ_1, σ_2, τ_0 の分布を表2, 表3に示す。このとき選定数は $M=16$ である。表1に示したように、最大応力の値は、Ling の解析結果と一致しているにも関わらず、表2, 3 共に、境界上で 0 であるべき σ_0 よりも τ_0 の値は、90°±10° 付近で満足感が悪い。このことは、従来の解析では、仮想境界上にモード1型の集中力のみを分配させていることが原因であると思われることがこの図2で示したように、混合モードとなる $\theta=90$° 付近の仮想境界上では、モード2型の応力成分が大きくわれずに残っているものと考えられる。

4. 新基本密度関数を用いる場合の解析法

4.1 引張問題の基本密度関数の定義

図2に示す2列円孔の干渉問題を厳密に解析するため、式(7)で定義される補助関数を考えるこれら関数は、それぞれ式(8.a)～(8.d)の関係を満たす。

$$
\rho_1(\phi) = \rho_2(\phi) + \rho_3(\pi - \phi) / 2
$$

$$
\rho_2(\phi) = \rho_1(\phi) - \rho_3(\pi - \phi) / 2
$$

$$
\rho_3(\phi) = \rho_1(\phi) - \rho_2(\pi - \phi) / 2
$$

$$
\rho_4(\phi) = \rho_2(\phi) - \rho_3(\pi - \phi) / 2
$$

ここで、$\rho_1(\phi)$ は $\rho_2(\phi)$ と $\rho_3(\pi - \phi)$ の平均値であり、$\rho_2(\phi)$ は $\rho_1(\phi)$ と $\rho_3(\pi - \phi)$ の平均値からずれを表わしている。$\rho_3(\phi)$ と $\rho_4(\phi)$ も同様である。

$$
\rho_1(\phi) = \rho_2(\pi - \phi)
$$

$$
\rho_2(\phi) = \rho_1(\phi) - \rho_3(\pi - \phi) / 2
$$

$$
\rho_3(\phi) = \rho_1(\phi) - \rho_2(\pi - \phi) / 2
$$

$$
\rho_4(\phi) = \rho_2(\phi) - \rho_3(\pi - \phi) / 2
$$

(8)

式(8)より、関数 $\rho_1(\phi) - \rho_2(\phi)$ を $0 \leq \phi \leq \pi/2$ の範囲で求めることは、関数 $\rho_1(\phi)$, $\rho_2(\phi)$ を $0 \leq \phi \leq \pi$ の全範囲で求めることに等しい。すなわち、
0 \leq \phi \leq \pi/2 で \rho_1(\phi) \sim \rho_3(\phi) が与えられるとき、式(9)に示されるように 0 \leq \phi \leq \pi での \rho_1(\phi), \rho_3(\phi) が与えられる。

\begin{align}
\rho_1(\phi) &= P_1^2(\phi) + P_3(\phi) \\
\rho_2(\phi) &= P_2^2(\phi) + P_3(\phi) \\
\rho_3(\phi) &= P_2^2(\phi) + P_3(\phi) \\
\rho_4(\phi) &= P_2^2(\phi) + P_3(\phi) \\
\end{align}

いま、この問題の基本密度関数 \(w_n(\phi)\) と式(10)で定義すると、式(10)は式(8)を満足する。

\begin{align}
w_n(\phi) &= n_1(\phi) \cos \phi \\
w_n(\phi) &= n_1(\phi) \\
w_n(\phi) &= n_1(\phi) \cos \phi \\
f(\phi) &= f(\pi - \phi) \\
\end{align}

ここで、式(10)中の \(w_n(\phi), w_n(\phi)\) は無限板中の1だ円孔を厳密に表現する体積分布の厳密解であり、従来の体積分布法で用いられている基本密度関数 [式(3)] の \(n_1(\phi), n_3(\phi)\)である。このような関数を用いて \(\rho_1(\phi) \sim \rho_3(\phi)\) を式(11)のように表現すると、基本密度に係数を重み関数 \(\rho_1(\phi) \sim \rho_3(\phi)\) (未知関数)が満足すべき条件は式(12)で表される。

\begin{align}
\rho_1(\phi) &= P_1^2(\phi) w_1(\phi) \\
\rho_3(\phi) &= P_3(\phi) w_3(\phi) \\
\rho_2(\phi) &= P_2^2(\phi) w_2(\phi) \\
\rho_4(\phi) &= P_4(\phi) w_4(\phi) \\
f(\phi) &= f(\pi - \phi) \\
\end{align}

4.2 特異積分方程式の離散化演算解析法

式(13)の表現を用いると式(1)の特異積分方程式は次式のように表現できる。

\begin{align}
&\left(-\frac{1}{2}\right)\left[\rho_1(\phi) \cos \theta + \rho_3(\phi) \cos^2 \theta_0 + \rho_3(\phi) \cos^2 \theta_0\right] \\
&+ \left[\rho_2(\phi) \cos \theta + \rho_4(\phi) \cos \theta_0\right] \\
&+ \left[\rho_2(\phi) \cos \theta + \rho_4(\phi) \cos \theta_0\right] \\
&= (\sigma_0^2 - \sigma_0^2) \cos \theta_0 \cos \theta_0 \\
&= (\sigma_0^2 - \sigma_0^2) \sin \theta_0 \cos \theta_0 \\
\end{align}

式(15)で定義される重み関数 \(\rho_1(\phi) \sim \rho_3(\phi)\)は、すなわち、未知関数 \(\rho_1(\phi) \sim \rho_3(\phi)\) は 0 \leq \phi \leq \pi/2 で定義され、\(\phi = 0, \pi/2, \pi\)で定数とみなすことができる。

以上の離散化の方法により、式(14)は係数 \(\rho_1, \rho_3\)についての4M元の連立方程式(19)に還元される。

\begin{align}
\sum_{n=1}^{\frac{M}{2}} (a_n A_n + b_n B_n + c_n C_n + d_n D_n) &= (\sigma_0^2 - \sigma_0^2) \cos \theta_0 \cos \theta_0 \\
\sum_{n=1}^{\frac{M}{2}} (a_n E_n + b_n F_n + c_n G_n + d_n H_n) &= (\sigma_0^2 - \sigma_0^2) \sin \theta_0 \cos \theta_0 \\
\end{align}

したがって、だ円境界上のそれぞれで適当に選んだ \(M\) 個の点 \(\phi = \phi_n, \pi - \phi_n, n = 1, \ldots, \frac{M}{2}\) に選び、境界条件を満足するように式(17)の連立方程式を解けば、任意の点の応力は係數 \(a_1, a_3\) と \(A_1, A_3\)の影響係数の一次関数で表現される。以上の解析の方法により、無限板中の2だ円孔の境界上の応力分布ならびに最大応力を求める。

5. 新基本密度関数を用いた解析結果および考察

5.1 関数の収束性

図2に示した2だ円孔の干涉問題において、\(a/b = 1, a/d = 2/3, \sigma_1 = 0, \sigma_2 = 1\)の場合、重み関数
の収束状況を表4に示す。本解析結果は、選点数M=8とM=12のとき有効数字5桁程度まで収束しておき収束性を示している。このような良好な収束性を示すことから、連続関数である重み関数をうまく近似できているものと考えられる。

<table>
<thead>
<tr>
<th>θ [Deg.]</th>
<th>M</th>
<th>ρ₀₁</th>
<th>ρ₀₂</th>
<th>ρ₁₀</th>
<th>ρ₁₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0.0301</td>
<td>-0.8914</td>
<td>2.9628</td>
<td>0.0529</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0401</td>
<td>-0.8899</td>
<td>2.9787</td>
<td>0.0615</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0401</td>
<td>-0.8899</td>
<td>2.9787</td>
<td>0.0615</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>0.0276</td>
<td>-0.8972</td>
<td>2.9853</td>
<td>0.0615</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0282</td>
<td>-0.8972</td>
<td>2.9853</td>
<td>0.0615</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0282</td>
<td>-0.8972</td>
<td>2.9853</td>
<td>0.0615</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>0.0062</td>
<td>-0.9183</td>
<td>3.0000</td>
<td>0.0498</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0026</td>
<td>-0.9183</td>
<td>3.0000</td>
<td>0.0498</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0026</td>
<td>-0.9183</td>
<td>3.0000</td>
<td>0.0498</td>
</tr>
<tr>
<td>60</td>
<td>4</td>
<td>0.0180</td>
<td>-0.9288</td>
<td>3.0129</td>
<td>0.0457</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0197</td>
<td>-0.9288</td>
<td>3.0137</td>
<td>0.0419</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0197</td>
<td>-0.9288</td>
<td>3.0137</td>
<td>0.0419</td>
</tr>
<tr>
<td>80</td>
<td>4</td>
<td>0.0336</td>
<td>-0.9388</td>
<td>3.0217</td>
<td>0.0436</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0312</td>
<td>-0.9373</td>
<td>3.0211</td>
<td>0.0375</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0312</td>
<td>-0.9373</td>
<td>3.0211</td>
<td>0.0375</td>
</tr>
<tr>
<td>90</td>
<td>4</td>
<td>0.0360</td>
<td>-0.9413</td>
<td>3.0229</td>
<td>0.0433</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0326</td>
<td>-0.9384</td>
<td>3.0221</td>
<td>0.0379</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0326</td>
<td>-0.9384</td>
<td>3.0221</td>
<td>0.0379</td>
</tr>
</tbody>
</table>

5.2 重み関数の離散化の方法の検討

4節において、新しいx, y方向についてそれぞれ2種類の基本密度関数w₁₁(φ), w₁₂(φ), w₁₁(φ)を定義し、未知関数である体積密度ρ₁(φ), ρ₂(φ)を式(13)で示したように、これらの基本密度関数と重み関数ρ₁₁(φ), ρ₁₂(φ), ρ₁₁(φ), ρ₁₂(φ)の一次結合で離散化する解析法を提案した。一方、従来の体積力法では、体積力密度を式(3)のように重み関数ρ₁₁(φ), ρ₁₂(φ)で離散化する。これらの離散化の方法により、重み関数が新たな未知関数となる。したがって、本解析における未知関数の個数は4個、従来の体積力法の未知関数の個数は2個であり、本解析の未知関数の個数は従来の体積力法の2倍となっている。このように増えた未知関数をどのように決定すればよいか、決定するにあたり矛盾が生じないかという疑問が生じる。ここでは、この点について検討を行う。

具体的には、図2の問題において、円孔の境界に沿ったx方向の体積力密度ρ(φ)の離散化の方法を従来の体積力法と本解析法による実際の解析結果を比較して検討する。

従来の体積力法では、求めるべき重み関数を分割した各区間で一定値をとる階段関数で近似する。したがって、問題を解くことは、分割した区間の中点の境界条件から各区間で一定値となる階段の高さを求めることが必要となる。

一方本解析では、未知関数を新しく定義した基本密度関数と重み関数の一次結合で表現し、さらに重み関数を連続関数として近似する[式(13)～(18)]。これらの離散化の方法により、問題は係数ア、ビを求めることに帰着される。

従来の体積力法による実際の解析結果として、図2の問題において、分割数M=2で、形状比がa/b=1, a/d=0の場合、x方向の体積力密度ρ(φ)を近似した結果を図3に示す。このとき、求めるべき未知数は、2分割したそれぞれの区間の高さであり、重み関数ρ₁₁(φ), ρ₁₂(φ)について2個である。

一方、本解析法を用いて、図3と同じ形状で解析を行う。選点数がM=2の場合において、x方向の体積力密度ρ(φ)を近似した結果を図4に示す。解析において、解析可能な最小の選点数は、式(15)で示した重み関数の離散化の方法によりM=2である。このとき求めるべき未知数は、係数ア、ビである。M=2の場合の重み関数を離散化した形をρ₁₁(φ), ρ₁₂(φ)にとって示すと、

$$\rho_{11}(\phi) = \frac{\phi}{\pi} \cos((2n-1)\phi)$$

とされる。したがって、この場合、重み関数ρ₁₁(φ)について、一定の係数ア₁を決めることがになる。また、重み関数ρ₁₂(φ)についても同様にして、一定の係数ビ₁を決めることがある。すなわち、決定すべき未知数は、選点数が2の場合ρ(φ)に関して、ア₁, ビ₁の2個であり、階段関数を用いる従来の体積力法の分割数が2の場合と同じである。

結局、本解析法では、従来の解析法と比較すると、未知関数は1個から2個に増えるが、式(17), (18)に示したように、その定義域は0≤φ≤πから1/2の
0≤φ≤π/2の範囲（φ=0, π/2, πに対称な関数）になり、従来の体積力法と比べて離散化的自由度は同じである。

また、図3(d)、図4(d)は解析によって得られた重み関数から計算された体積密度ρ(φ)の値である。選点数が2と少ないために両者の間に差はあまり生じていないが、選点数を増加させると本解析結果が真の体積力密度完全に収束するのに対し、階段関数を用いる場合分割数を増加させても体積密度が収束しない。こので、図3、4に示した体積力密度ρ(φ)の図は、
本解析において求めたものであるが、解の収束性（表 5）と高解境界条件の満足度（表 6, 7）を確認しており真の密度であると考えられる。

5.3 境界条件 ($\sigma_z=0$, $\tau_{zr}=0$) の満足度の検討
本解析による境界条件の満足度を確かめるために、
図2の問題において、形状比 $a/b=1$, $a/d=1/3$, $\sigma_z=0$, $\sigma_r=1$ の場合、円孔縁における応力 σ_r, τ_{zr}の分布を表5に、$\sigma_z=1$, $\sigma_r=0$ の場合の分布を
表6に示す。表2, 3で示したものに、式(1)の未知関数 $\rho(\phi)$, $\rho_1(\phi)$を多数式の形で近似する方法では、境界上にモードII型の応力成分が残り、境界条件を完全には満足させることができなかった。一方本
解析では、境界上で0であるべき、σ_z, τ_{zr}の値は円
孔縁全周においてM=8程度で10^{-1}以下であり、
高い境界条件の満足度が確かめられた。

5.4 2円孔干涉問題の最大応力の収束性
形状比が $a/b=1$, $\sigma_z=0$, $\sigma_r=1$ 応力集中係数の
収束状況をLingの解析結果ととともに表7に示す。
表中の θ は最大応力が生じる位置である。本解析結果
はM=16程度で有効数字6桁まで完全に収束してい
て良好な収束性を示している。Lingの解析結果と比
較すると、a/d が小さいとき両者はよく一致するが、
a/d が大きくなるにつれて、本解析結果との間に最大
2%程度の違いが生じる。
表5 境界上の応力分布

<table>
<thead>
<tr>
<th>θ [deg]</th>
<th>M</th>
<th>σx</th>
<th>σy</th>
<th>τyx</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>3.0186</td>
<td>-9.4×10⁻⁴</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>3.0197</td>
<td>-2.9×10⁻⁴</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.0197</td>
<td>-4.9×10⁻⁴</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.3759</td>
<td>8.1×10⁻⁴</td>
<td>8.1×10⁻⁴</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>1.3747</td>
<td>-2.0×10⁻⁴</td>
<td>-2.0×10⁻⁴</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>1.3747</td>
<td>2.1×10⁻⁴</td>
<td>2.1×10⁻⁴</td>
<td>0</td>
</tr>
<tr>
<td>180</td>
<td>1.3747</td>
<td>-4.9×10⁻⁴</td>
<td>-4.9×10⁻⁴</td>
<td>0</td>
</tr>
</tbody>
</table>

表6 境界上の応力分布

<table>
<thead>
<tr>
<th>θ [deg]</th>
<th>M</th>
<th>σx</th>
<th>σy</th>
<th>τyx</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>-0.9186</td>
<td>-1.4×10⁻³</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>-0.9186</td>
<td>-1.3×10⁻⁴</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-0.9186</td>
<td>-1.5×10⁻⁴</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.4379</td>
<td>1.1×10⁻⁴</td>
<td>1.1×10⁻⁴</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>1.4379</td>
<td>-1.1×10⁻⁴</td>
<td>-1.1×10⁻⁴</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>1.4379</td>
<td>-2.5×10⁻⁴</td>
<td>-2.5×10⁻⁴</td>
<td>0</td>
</tr>
<tr>
<td>180</td>
<td>2.9998</td>
<td>2.0×10⁻³</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

表7 最大応力の収束性

<table>
<thead>
<tr>
<th>a/d</th>
<th>0.125</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>θ = 86.9°</td>
<td>θ = 86.6°</td>
<td>θ = 86.6°</td>
<td>θ = 86.1°</td>
<td>θ = 86.0°</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.96900</td>
<td>2.96273</td>
<td>2.82645</td>
<td>2.71621</td>
<td>2.67378</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.96900</td>
<td>2.96269</td>
<td>2.82654</td>
<td>2.70667</td>
<td>2.6413</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.96900</td>
<td>2.96269</td>
<td>2.82653</td>
<td>2.70652</td>
<td>2.63976</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.96900</td>
<td>2.96269</td>
<td>2.82653</td>
<td>2.72650</td>
<td>2.63976</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.96900</td>
<td>2.96269</td>
<td>2.82653</td>
<td>2.72650</td>
<td>2.63976</td>
<td></td>
</tr>
</tbody>
</table>

6. 結 言

本論文では、前報で提案した特異積分方程式の高精度解法を用いた応力集中の基本問題である無限板中の2d円孔の干渉問題に適用する数値解析法を考察した。前報で提案した解析法を用いた場合と本報で提案した方法を用いた場合とで境界条件の満足度等の検討を行い解析精度を確認した。結果をまとめると以下のようになる。

(1) 無限板中の2d円孔を表象する体積密度の厳密解のみを基本密度関数として用いて、無限板中の2d円孔の干渉問題の解析を行った。その結果、本解析法は従来の体積密度法よりも良好な応力集中係数の収束性が得られた。また、Lingの最大応力を求めた解析結果は本解析結果と良く一致した。しかし、境界条件の満足度を調べた結果、モードI型の体積密度を境界上に分布させただけでは、モードII型の応力成分が打ち消されずに残る場合があることがわかった。

(2) 境界条件を完全に満足させるために、x方向およびy方向の体積密度に関してそれぞれ1つずつ種類（計2種類）の基本密度関数を従来用いられている基本密度関数に加えて新たに規定した。そして、特異積分方程式の未知関数である体積密度をこれらの基本密度関数と重なり関数の一次結合で近似する解析方法を示した。

(3) 無限板中の2d円孔の干渉問題の解析を行った結果、モードI型の体積密度を分布させただけでは、境界上にモードII型の応力成分が残り境界条件を完全に満足させることができなかったが、モードI型、モードII型の基本密度関数を同時に分布させることで、境界上のいずれの点でも境界条件をほとんど完全に満足させることが可能となった。

参考文献

(3) 西谷弘信・陳義政、体積密度法（重ね合わせの原理による数値解析法）、生産者、(1987).
(4) 西谷弘信：日本機械学会誌. 70-580 (1967) p.627.